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1 Abstract

We will briefly discuss a technique for applying transient volumetric current
sources in full-wave, time-domain electromagnetic simulations which avoids the
need for divergence cleaning. The method involves both “edge-elements” and
“face-elements” in conjunction with a particle-in-cell scheme to track the charge
density. Results from a realistic, 6.7 million element, 3D simulation are shown.
While the author may have a finite element bias the technique should be appli-
cable to finite difference methods as well.

2 Introduction

The Maxwell Equations with a current density source term can be written

∂

∂t
~D = ∇× ~H − ~J

∂

∂t
~B = −∇× ~E

where
~D = ε ~E and ~B = µ ~H

These equations are commonly discretized using “edge-elements”, or discrete
1-forms, for the electric field and “face-elements”, or discrete 2-forms, for the
magnetic flux density. This scheme requires that ~J also be approximated with
edge-elements, which works quite well in many situations. However, this scheme
does have certain drawbacks.

∗This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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One difficulty with 1-form current densities is that they can spread through
material interfaces into non-physical regions. For example, consider a vacuum
region abutting a weak conductor which contains a constant current density.
What value for ~J should be applied to the edges which are shared between
these two regions? If the constant ~J value is used, then the conducting region
will contain the correct value but the vacuum region will also contain a non-zero
current density. If a value of zero is applied on these edges, then the vacuum
region will correctly have zero current but the conductor will contain less current
density than desired.

Another difficulty, and the one we will focus on, arises if the current density
is transient and the primary interest is to determine how a cavity will resonate
after a current pulse passes through it. The problem here is that the continuity
equation for the electric charge is only weakly satisfied. Therefore, current
densities can, and often do, leave behind non-physical charge densities after
they pass through the computational mesh. These charge densities can, in turn,
produce a non-physical, static, electric field which not only makes field plots
appear ugly but can also reduce the accuracy of the meaningful portion of the
solution.

3 Example Problem

Consider a laser target chamber, which is roughly cylindrical with a height of
nearly one meter and a radius of one meter. The chamber also has several port
holes for diagnostic equipment as well as the input port for the laser beam.
When a high power laser beam enters the chamber and strikes its target, it will
partially vaporize the target and generate a flux of electrons which are propelled
towards the outer walls of the chamber.

We are primarily interested in the pulse of electromagnetic waves radiated
by this charge packet so we do not model the incoming laser beam or the va-
porization of the target. Also, we do not currently attempt to model the charge
packet as a plasma, it is simply a known charge density moving through the
mesh in a prescribed fashion. This approximation is valid for this particular
problem because the liberated electrons have very high energies.

4 Typical E/B Formulation

As mentioned previously a standard E/B formulation of the problem requires
that ~J be approximated by discrete 1-forms with degrees of freedom on the
edges of the mesh.

∂

∂t

(
ε ~E

)
= ∇× 1

µ
~B − ~J

∂

∂t
~B = −∇× ~E
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(a) Standard E/B Formulation

(b) E/B with Divergence Cleaning (c) D/H Formulation with PIC
Source

Figure 1: The Divergence of the vector field ~D plotted on a logarithmic scale.

If we take the divergence of Ampère’s law and make use of the fact that the
charge density is related to the electric displacement via ∇ · ~D = ρ, we find the
following:

∇ · ∂
∂t

(
ε ~E

)
= −∇ · ~J

or
∂ρ

∂t
+∇ · ~J = 0.

The divergence of a 1-form can only be defined in a weak sense, i.e. as a type
of least squares best fit. Hence the continuity equation for the electric charge
may not be locally satisfied everywhere although it should be nearly satisfied
globally.

Figure 1a shows an example of a charge density plot for our model problem.
The image clearly shows the charge packet itself just to the right of center.
Unfortunately, it also shows a large non-physical charge buildup left behind in
the wake of the packet. The boundary of the computational domain is assumed
to be a perfect electrical conductor so the charge near the boundary can be
interpreted as being related to the surface charge density. This is actually
another oddity of the E/B formulation, surface charges appear smeared into the
volume elements which touch the surface. This may not be an attractive feature
of the image but at least it has a reasonable physical interpretation.

5 Divergence Cleaning

The non-physical charge buildup can be removed by performing divergence
cleaning when deemed necessary or perhaps at every time step. This is the
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Figure 2: Logarithmically scaled contour plot of the magnitude of the electric
field computed using the E/B formulation with divergence cleaning.

process of adding something to the field so that its divergence has a desired
value but its curl remains unchanged. For the model problem we can add a ~̃J
to the source so that the divergence will match the desired change in charge
density given by ρ̇. We assume that the correction to ~J is the gradient of a
scalar field ψ so that it will have zero curl.

ρ̇ = −∇ · ~J (the computed change in ρ)

ρ̇ = ρ̇+ ˙̃ρ = −∇ · ~J −∇ · ~̃J (the desired change)

∇ · ~̃J = −ρ̇−∇ · ~J (the necessary correction to ~J)

∇2ψ̃ = −ρ̇−∇ · ~J

Each divergence cleaning operation then requires an additional linear solve to
compute the scalar field ψ.

With this correction we see that the divergence of ~D, shown in figure 1b,
now matches the desired charge density. Again, note that the charge density
near the surfaces is due to the presence of a surface charge density.

Unfortunately, this method has a drawback when the charge density has
a velocity near the speed of light. The correction introduces a small quasi-
static field centered on the charge density, which appears to propagate faster
than the speed of light. Figure 2 shows a logarithmically scaled contour plot
of the electric field magnitude which clearly shows contours well beyond the
charge packet, which is located near the innermost contour. In figure 1b this
component of the field can also be seen because it introduces surface charge
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densities on the metal object ahead of the charge packet and on several sharp
corners farther away. These non-physical charge densities are obviously due to
the global solve necessary to compute ψ.

6 D/H Formulation

Obviously, the difficulties discussed in this paper stem from the treatment of
~J as a 1-form vector field. Current density is, however, a flux vector, i.e. the
amount of charge crossing a given area per unit time. Flux vector fields are more
naturally described using 2-forms so we should have more luck if we approximate
Ampère’s law using discrete 2-forms.

∂

∂t
~D = ∇× ~H − ~J

∂

∂t

(
µ ~H

)
= −∇× 1

ε
~D

In this formulation the curl of ~D must be computed in the weak sense. This
weak form requires the solution of a linear system to update ~H using Faraday’s
law. In the standard E/B formulation it is the curl of ~B that must be com-
puted in the weak sense, requiring a linear solve in Ampère’s law to update ~E.
Normally this linear solve allows us to apply voltage boundary conditions on ~E
where we can specify that the tangential component of ~E is zero on perfect elec-
trical conductors. In the D/H formulation this constraint becomes unnecessary
because the natural boundary condition is that the tangential component of
∇× ~H = 0 but, of course, this equation is equivalent to ~E = 0 on the boundary.

Simply treating ~J as a 2-form does not magically solve all of our problems.
What it does is convert our charge buildup problem from a global least-squares
fit into much more simple local charge conservation problem. One way to solve
this problem is to use a particle-in-cell (PIC) technique. We don’t have the
space to describe this procedure in detail but the essential idea is simple enough.
Split up the trajectory of the charge packet into a group of rays and imagine the
charges themselves as beads moving along these rays. Each time a bead crosses
a cell boundary a small flux is applied to the corresponding face in the mesh.
If enough rays are used and there are enough beads strung along each ray, then
the source will appear reasonably smooth. We should emphasize that we are
not performing a self-consistent PIC simulation. The fields do not effect the
motion of the charge packet in any way. We are simply using the PIC concept
as a bookkeeping scheme to maintain charge conservation.

Figure 1c shows a charge density plot produced using this scheme. Clearly
the image shows no sign of non-physical charge buildup. Additionally, the sur-
face charge density does not appear. A further advantage of this method is
that the charge density and current density on the surface of perfect electrical
conductors can be more accurately computed, if desired. These surface fields
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Figure 3: Logarithmically scaled contour plot of the magnitude of the electric
field computed using the D/H formulation with a PIC source.

can be directly computed from the surface degrees of freedom for ~D and ~H
respectively.

Figure 3 again shows a logarithmically scaled contour plot of the electric
field magnitude, analogous to that shown in figure 2. However, in the new plot
the non-physical, quasi-static field contours are no longer present. The fields
now properly propagate within a spherical shell which expands at the speed of
light.

7 Conclusion

We have presented an outline for a charge conserving method of applying tran-
sient current sources to the Maxwell Equations in the time-domain. Some of the
advantages of using a D/H formulation of the coupled first order wave equation
have been discussed. The ability to run charge conserving simulations of tran-
sient current densities, while optionally computing accurate representations of
surface currents and charge densities, is very appealing. The added benefit of
more easily coupling to a PIC simulation, capable of more accurately modeling
the motion of the charge packet itself, provides numerous avenues for enhancing
the modeling of similar problems.

It should also be noted that the standard E/B formulation and the PIC
method placed essentially equivalent demands on computing resources. Each
simulation was performed using the same number processors and ran for vir-
tually the same length of time. Conversely, the divergence cleaning proce-
dure, using an algebraic multigrid solver, increased the run time by a factor
of roughly 2.8.
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